Identification and Characterization of a Novel AAV Capsid & Product for the Treatment of Cystic Fibrosis Lung Disease

Melissa A. Calton, Ph.D.¹, Melissa Kotterman, Ph.D.¹, Christopher Schmitt, Ph.D.¹, Austin Klein¹, Christian Burns¹, Roxanne Croze, Ph.D.¹, Julie Nye¹, Ghezal Beliakoff¹, Melissa Quezada¹, Sarah Tucker¹, Ted Sullivan¹, Kevin Whittlesey, Ph.D.¹, Katherine Barglow, Ph.D.¹, Peter Francis, M.D., Ph.D.¹, David Schaffer, Ph.D.^{1,2}, David Kirn, M.D.¹

¹ 4D Molecular Therapeutics, Emeryville, CA

² University of California, Berkeley, CA

Disclosure to Learners

- Financial relationships with relevant companies within the past 24 months:
 - 4D Molecular Therapeutics, Inc., *Full-time Employee*

Unmet Need & Limitations of Conventional AAV Vectors for CF Lung Disease DURABLE REPLACEMENT OF CFTR BY AAV GENE THERAPY HOLDS PROMISE

Background:

- Cystic Fibrosis (CF): monogenic disorder caused by mutation in CFTR
- High unmet medical need in CF lung disease remains despite modulator therapy
- Aerosolized AAV-CFTR gene therapy failed to show efficacy in clinical trials
- AAV delivery through mucus barrier limited

Program Objectives:

- Invent vector with optimized Target Profile
- Design, engineer & package promoter/CFTR payload in vector
- Preclinical pharmacology, toxicology & biodistribution studies to support IND & clinical trial initiation

Therapeutic Vector Evolution in Primate Lung: A101 Invention

4DMT AAV DISCOVERY PROGRAM FOR AEROSOL DELIVERY TO LUNG AIRWAYS

- Industrialized Therapeutic Vector Evolution platform
- ~ I BILLION synthetic AAV capsid sequences
- Primate (NHP) model most relevant
- Aerosol delivery with clinically approved nebulizer
- AIOI Target Vector Profile designed for:
 - Widespread efficient aerosol delivery to lung airway and alveolar cells
 - Penetration through mucus barrier
 - Resistance to pre-existing neutralizing antibodies in human population
 - Efficient lung airway cell transduction and transgene expression

Human Antibody Resistance & Efficient Transduction of Human Cells

A101 DRIVING EXPRESSION OF REPORTER OR microCFTR (4D-710) TRANSGENE

A101 HUMAN ANTIBODY RESISTANCE

- Compared to conventional AAV vectors in vitro
- All vectors driving expression of a luciferase reporter transgene

[†] p < 0.05 for A101 vs AAV5 ^{*} p < 0.05 for A101 vs AAV1, AAV2, AAV8, and AAV9</p>

4D-710 CFTR PROTEIN EXPRESSION

 Dose-dependent & cell membrane localization

4D-710 CFTR mRNA EXPRESSION

Dose-dependent mRNA expression

A101 Aerosol Delivery & Transgene Expression in Primates

VECTOR CHARACTERIZATION & 4D-710 PILOT SAFETY/DOSE FINDING NHP STUDIES

A101-EGFP: BIODISTRIBUTION

- Single aerosol delivery with clinical nebulizer
- High levels of genome localization in lungs
- Minimal systemic distribution

A101 genome localization was limited in liver and heart, and not present in other tissues outside the lung.

4D-710 Lung Genome (qPCR) 46/48 (95.8%) mRNA (RT-qPCR) 44/48 (91.7%)

Number of positive tissue samples across three NHPs are indicated.

Illustrative images highlight transduction of the NHP lung at the 3EI3 vg dose.

4D-710: TOLERABILITY & CFTR TRANSGENE EXPRESSION

- Single aerosol dose of product candidate 4D-710 (3E13 vg per NHP)
- No adverse findings or inflammation reported
- CFTR transgene expression detected throughout all lung segments

Conclusions

4D-710 FOR THE TREATMENT OF CYSTIC FIBROSIS LUNG DISEASE

- Therapeutic Vector Evolution used in primates to invent A101 vector
- AI01 matches Target Vector Profile:
 - Aerosol delivery throughout NHP airways
 - $\circ~$ Mucus barrier penetration in NHP
 - Resistance to pre-existing human antibodies
 - o Efficient lung airway cell transduction & transgene expression in NHP
- 4D-710: product candidate for patients with CF lung disease
 - Designed, engineered, & packaged the promoter/CFTR payload in A101
 - Performed preclinical pharm, tox & biodistribution studies to support IND filing
- Next Steps: Advance 4D-710 to IND filing & clinical development

Acknowledgments

- Our special thanks to the Cystic Fibrosis Foundation
- 4DMT Process & Analytical Development
- 4DMT Project Management

Thank You

5858 Horton Street, Suite 455 Emeryville, CA 94608 (510) 505-2680 | info@4DMT.com 4DMT.com

