5 – 8 JUNE 2024 GLASGOW, UNITED KINGDOM

47th EUROPEAN CYSTIC FIBROSIS CONFERENCE

CFTR Transgene Expression in Airway Epithelial Cells Following Aerosolized Administration of the AAV-based Gene Therapy 4D-710 to Adults with Cystic Fibrosis Lung Disease

Jennifer L. Taylor-Cousar, Joel Mermis, Alex Gifford, Ted Sullivan, Jinsong Shen, Alan H. Cohen, David Kirn, Scott Donaldson, Alicia Casey, Raksha Jain, Daniel J. Dorgan

Disclosures

- Personal financial relationships with commercial interests relevant to medicine, within the past year:
 - As faculty at an institution that is part of the CFTDN, I am/have been site/national PI on studies for 4DMT, Vertex, and Eloxx.
 - I have done clinical trial consulting for Vertex.
 - I served on a DMC for AbbVie
- Personal financial support from a non-commercial source relevant to medicine, within the past year:
 - I have received grant funding from the CF Foundation and NIH.
 - I have no personal relationships with tobacco industry entities
 - I serve as the adult patient care representative to the CFF Board of Trustees, and on the CF Foundation's Clinical Research Executive Committee, Clinical Research Advisory Board, as immediate past chair of the CF TDN's Sexual Health, Reproduction and Gender Research-Working Group and Chair of the Health Equity Team Science Awards Study Section, on the Scientific Advisory Board for Emily's Entourage, on the NIH Clinical Trials Study Section and as the ATS International Conference Committee Chair-elect.

Conventional AAV-based Gene Therapy in CF Lung Disease

6 Clinical Trials Evaluating AAV2-based Gene Therapy (tgAAVCF) in Upper and Lower Airways¹⁻⁸

- Nasal and sinus administration (3 trials; N=34)
 - Safe and well tolerated
 - DNA: Detected
 - Transgene expression: Detected
 - CFTR function: Demonstrated (vs contralateral control)
- Aerosol delivery to lung (3 trials; N=84)
 - Safe and well tolerated
 - DNA: Detected
 - Transgene expression: Not detected
 - Percent predicted FEV₁: No change vs controls

^{1.} Wagner JA et al. Hum Gene Ther 1998; 9: 889-909. 2. Wagner JA et al. Lancet 1998;351:1702-3. 3. Wagner JA et al. Laryngoscope 1999;109:266-74. 4. Wagner JA et al. Hum Gene Ther 2002;13:1349-59. 5. Flotte TR et al. Hum Gene Ther 2003;14:1079-88. 6. Flotte TR et al. Hum Gene Ther 2007;16:921-8. 7. Aitken ML et al. Hum Gene Ther 2001;12:1907–16. 8. Moss RB et al. Chest 2004;125:509-21. 9. Moss RB et al. Hum Gene Ther 2007;18:726-32.

4D-710: Aerosolized Gene Therapy for Cystic Fibrosis Lung Disease Product Design and Characteristics

- Efficient mucus penetration
- Efficient transgene expression
- Resistance to pre-existing antibodies

4D-710 Phase 1/2 Clinical Trial: Dose Exploration

Open-label Trial in CFTR Modulator-ineligible/intolerant Adults with Cystic Fibrosis Lung Disease

4D-710 Phase 1/2 Clinical Trial: Dose Exploration

Demographics and Baseline Characteristics

		2×10) ¹⁵ vg		1×10 ¹⁵ vg			5×10 ¹⁴ vg		2.5×1014vg
Age, y	37	27	32	69	36	24	20	42	39	25
Sex	Female	Male	Female	Female	Male	Male	Female	Female	Female	Male
Race	White	White	White	White	White	White	White	White	Black	White
Ethnicity	Non-Hispanic	Non-Hispanic	Non-Hispanic	Non-Hispanic	Non-Hispanic	Non-Hispanic	Non-Hispanic	Non-Hispanic	Non-Hispanic	Non-Hispanic
CFTR modulator status	Ineligible	Ineligible	Ineligible	Intolerant	Intolerant	Ineligible	Ineligible	Intolerant	Ineligible	Ineligible
Sweat chloride, mmol/L*	84	96	103	114	74	103	110	107	134	120
ppFEV ₁	90	56	80	86	83	69	95	100	77	58
CFQ-R-R score	78	72	89	78	72	61	83	72	78	28
A101 anti-capsid Ab	Negative	Negative	Negative	Negative	Positive	Negative	Positive	Positive	Pending	Negative
A101-specificT cells	Positive	Negative	Negative	Negative	Negative	Positive	Positive	Pending	Pending	Pending

*Sweat chloride normal range ≤29 mmol/L, Diagnosis of Cystic Fibrosis: Consensus Guidelines from the Cystic Fibrosis Foundation (2017).

Ab, antibody; CFTR, cystic fibrosis transmembrane conductance regulator; CFQ-R-R, Cystic Fibrosis Questionnaire–revised (respiratory domain); FEV₁, forced expiratory volume in 1 second.

4D-710 Safety & Tolerability: 2×10¹⁵ vg (Highest Studied Dose) Duration of Follow up: 13–17 Months (n=4)

- Treatment-related adverse events
 - \circ Pneumonitis and FEV₁ decline (n=1 participant); resolved
 - Previously reported SAE, pneumonitis NOS (n=I participant); resolved
 - ppFEV₁ at last assessment (month 12) +6% compared to baseline
- Analysis of tissue samples from lung biopsies obtained at weeks 4–8:
 - $\circ~$ No evidence of inflammation or toxicity
 - \circ CFTR protein expression
 - ~400% higher in epithelium compared to normal (non-CF) lung samples
 - Widespread expression observed in interstitium
- 2×10¹⁵ vg dose will not be further evaluated; 1×10¹⁵ vg defined as the MTD

4D-710 Safety & Tolerability: 2.5×10¹⁴ to 1×10¹⁵ vg Duration of Follow up:1–25 Months (n=6)

- Administration of aerosolized 4D-710 well tolerated
 - No dose-limiting toxicities
 - No 4D-710–related SAEs
 - No clinically significant 4D-710-related adverse events after administration
- No inflammation or toxicity in tissue samples from lung biopsies

4D-710 Phase 1/2 Clinical Trial

Bronchoscopic Sampling Plan

Bronchoscopy: Week 4*

*One bronchoscopy conducted at Week 8 due to pulmonary exacerbation (unrelated to 4D-710). †Assessed by in situ hybridization. ‡Assessed by immunohistochemistry. ¶Assessed by qPCR.

Minnich DJ, Mathisen DJ. Anatomy of the trachea, carina, and bronchi. Thorac Surg Clin 2007;17:571-85.

IHC & ISH Assay Specificity and Sensitivity

Superior Sensitivity of IHC Compared to ISH Confirmed in 4D-710–Transduced HT29 CFTR CRISPR KO Cells

CFTR IHC and ISH % (+) vs 710 MOI in HT29 KO Cells

 IHC is more sensitive and has a different dynamic range compared to ISH

CFTR Expression: Machine Learning-Assisted Image Analysis

Qualitative and Semi-quantitative Analyses

- Reliable diagnostic-grade image analysis software^{*}
- Holistic and objective whole-slide analysis
 - o 100% of airway epithelial cells analyzed
 - 100% manual QC to confirm accuracy of cell classification and exclusion of sectioning/staining artifacts
- Percent positive cells & H-score calculated by software algorithm
 - H-score (range, 0–300): measure of staining intensity and distribution; higher scores indicate increased signal intensity and distribution

IHC staining intensity: ■ 0 ■ 1⁺ ■ 2⁺ ■ 3⁺

*Visiopharm[®] image analysis software. CFTR, cystic fibrosis transmembrane conductance regulator; IHC, immunohistochemistry.

4D-710 Transgene Delivery and RNA Expression

Dose-dependent CFTR AR RNA Expression

CFTR⊿R RNA (ISH)

- Dose-dependent CFTR AR mRNA expression in bronchial epithelial cells
- No CFTR AR mRNA expression observed in commercial non-CF and CF lung samples
- Commercial non-CF samples positive for endogenous CFTR mRNA expression

Quantification by Visiopharm[®] AI Machine Learning Analysis. Number shown below each group indicates the number of lung samples. *Genotyping of commercial CF samples yielded results for 13/35 samples; of these, a majority were ΔF508 homozygous mutations. CFTR, cystic fibrosis transmembrane conductance regulator; ISH, *in situ* hybridization.

4D-710–Mediated CFTR Protein Expression by IHC

Dose-independent CFTR Protein Expression Following 4D-710 Administration

Widespread Consistent CFTR Protein Expression: 100% of Samples

16 of 16 Endobronchial Biopsy Samples Positive for CFTR Protein by IHC 4–8 Weeks After 4D-710 Dosing*

4D-710

Interstitial staining at highest dose

Controls

CFTR Protein Expression Observed in Multiple Airway Cell Types

CFTR Protein Localization (IHC) Following Administration of 4D-710: secretory, ciliated & basal cells

CFTR Protein Expressed in Multiple Cell Types*

I) Basal cells 2) Goblet cells 3) Columnar ciliated cells

Localization to Apical Region[†]

*Image from Cohort I (1x10¹⁵ vg) participant. †Images from Cohort 2 (2x10¹⁵ vg) participants. CFTR, cystic fibrosis transmembrane conductance regulator. IHC, immunohistochemistry.

Immunogenicity Analyses

Pre-existing A101 Immunity Did Not Affect CFTR / RNA or CFTR Protein Expression

CFTR Expression According to Baseline A101-specific T Cells

Pre-existing Anti-A101 Capsid Antibodies

- 3/9 positive for pre-existing A101 capsid antibodies*
- No significant difference in bronchoscopy results between participants with (n=3) and without (n=6) pre-existing A101 antibodies
- No observed effect of pre-existing antibodies on safety

Pre-existing A101-specific T cells

- 3/7 positive for pre-existing AI0I-specific T cells[†]
- No significant difference in bronchoscopy results between participants with (n=3) and without (n=4) pre-existing A101-specific T cells

4D-710 Phase 1/2 Clinical Trial

Percent Predicted FEV₁ (12 Months)

Respiratory-related adverse events*: O Pulmonary exacerbation O Viral respiratory infection O Pneumonitis O Hemoptysis

4D-710 Phase 1/2 Clinical Trial

Percent Predicted FEV₁ in Participants with a Baseline Value $\leq 80\%$ (N=3)

- Three participants had a baseline ppFEV₁ ≤80% and ≥6 months of follow up
- Two showed improvement in ppFEV₁ at 12 months
 - 2x10¹⁵ vg (n=1):+6%
 - Ix10¹⁵ vg (n=1): +5%

Respiratory-related adverse events*: O Pulmonary exacerbation O Viral respiratory infection O Pneumonitis

4D-710 (I×10¹⁵ vg): Durable Improvement in CFQ-R-R Score Mean Increase Over 12 Months Consistently Above MCID

CFQ-R Respiratory Symptom Score

CFQ-R Respiratory Symptom Score **Respiratory Symptom Score** Mean change in CFQ-R * MCID¹ 12[†] Month Month Evaluable, n[‡] Participant I Participant 2 Participant 3

*Respiratory-related adverse event within 21 days of assessment. [†]All enrolled participants (n=3). [‡]Excludes participants with a respiratory-related event within 21 days of assessment. CFQ-R-RD, Cystic Fibrosis Questionnaire-Revised (respiratory symptoms scale). Scores range from 0 to 100, with higher scores indicating better health. MCID=4 points [1]. 1. Quittner AL et al. *Chest* 2009;135:1610–18.

Mean Change in CFQ-R Score

4D-710 Phase 1/2 Clinical Trial Interim Analysis Summary and Conclusions

- Administration of a single aerosolized dose of 4D-710 to adults with CF lung disease was generally well tolerated at doses up to 1×10¹⁵ vg (n=6; follow up, 1–25 months)
- I00% of lung samples positive for CFTR transgene mRNA and protein expression
 - \circ Dose-dependent CFTR ΔR transgene RNA expression
 - Target expression levels achieved across all tested doses
 - Robust, consistent, and widespread CFTR protein expression
 - CFTR protein levels in 4D-710-treated participants 2-4x higher than non-CF and CF lung samples
 - CFTR protein expression observed in multiple airway epithelial cell types, including basal cells
- Pre-existing AAV immunity did <u>not</u> prevent transgene expression/biological activity
- Enrollment in 2.5×10¹⁴ and 5×10¹⁴ vg cohorts ongoing
 - Biological activity (CFQR-R QOL and ppFEV₁) to be reported at 12 months

Acknowledgments

Participants and Their Families, Principal Investigators and Study Staff, CFF

4DMT CFTR IHC Assay Development

Validated by Extensive Control Testing to Ensure Specificity to CFTR Epitope

Test	Control Cell/Tissue	Result	
Specificity and	Transfected vs. un-transfected HEK293T cells	Confirmed	
Signal Differential	Untreated HT29 vs. CFTR CRISPR-modified knockout HT29 cell lines	Confirmed	
	Vehicle-treated vs. 4D-710–treated NHP lung tissue	Confirmed	
	Commercial lung samples: normal lung (n=10); genotyped CF lung (n=35)	Confirmed	
	Transduced CRISPR-modified knockout HT29 cell lines	Confirmed	
	Western blotting using IHC antibody (M3A7)	Confirmed	
Sensitivity	Transduced CRISPR-modified knockout HT29 cell lines (transduction across range of MOIs)	Confirmed	
Negative Control	CFTR null lung samples (CF Foundation)	Confirmed	
	NHP lung tissue treated with vehicle & A101 carrying alternate transgene	Confirmed	
	Mouse IgGI-matched isotype controls (all tested lung samples)	Confirmed	