

Targeting the Complement Pathway with AAV-Based Gene Therapy for Geographic Atrophy

Melissa A. Calton, Ph.D.

Senior Director, Head of Early-Stage Product Development 4D Molecular Therapeutics

4D Molecular Therapeutics (4DMT)

BOLDLY INNOVATING TO UNLOCK THE POTENTIAL OF GENETIC MEDICINES FOR MILLIONS OF PATIENTS

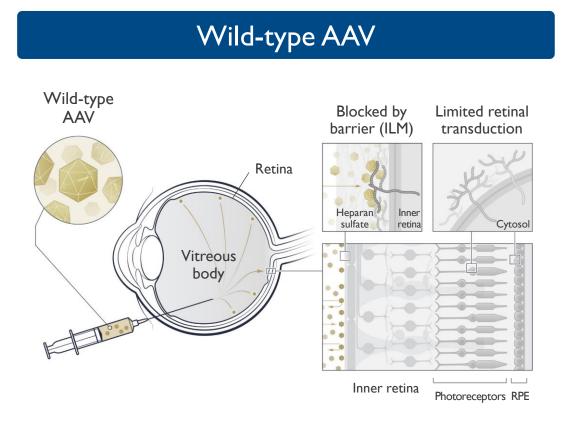
Company	Nasdaq FDMT	Emeryville, CA	~140 Employees GMP Facilities R&D Headquarters		
Technology Platform	Directed Evolution	~ I Billion AAV capsid sequences	Customized and evolved vectors Payload design and engineering GMP manufacturing		
Product Engine	Vector Modularity	Clinical-Stage Vectors in	n 3 Therapeutic Areas		
Clinical Development		5 Clinical Candidates for 7 Patient Populations			
Strategy		Fully Integrated Genetic Medicines Company			

Pipeline: 5 Clinical-stage Product Candidates

3 THERAPEUTIC AREAS, INCLUDING RARE AND LARGE PATIENT POPULATIONS

VECTOR Delivery	PRODUCT CANDIDATE	INDICATION	EPIDEMIOLOGY (PREVALENCE)	RESEARCH CANDIDATE	IND-ENABLING	PHASE 1/2	PHASE 3	PRODUCT RIGHTS
R I 00 Intravitreal	OPHTHALMOLOGY							
	4D-150	Wet AMD	~3M US/EUMM					\$ 4DMT
		Diabetic Macular Edema	~1.2M US					\$ 4DMT
	4D-125	XLRP	~24K US/EUMM					\$ 4DMT
	4D-110	СНМ	~13K US/EUMM					\$ 4DMT
	4D-175	Geographic Atrophy	~IM US					4DMT
	Undisclosed	Rare Monogenic Disease	Undisclosed (Rare)					Astellas
AIOI Aerosol	PULMONOLOGY							
	4D-710	CF Lung Disease (not modulator-amenable)	~6K US					\$4DMT
		CF Lung Disease (modulator-amenable)	~34K US					4DMT
	4D-725	AIAT Deficiency Lung Disease	~200K US/EUMM					\$ 4DMT
C102 //	CARDIOLOGY							
	4D-310	Fabry Disease Cardiomyopathy	~50-70K US/EUMM					4DMT

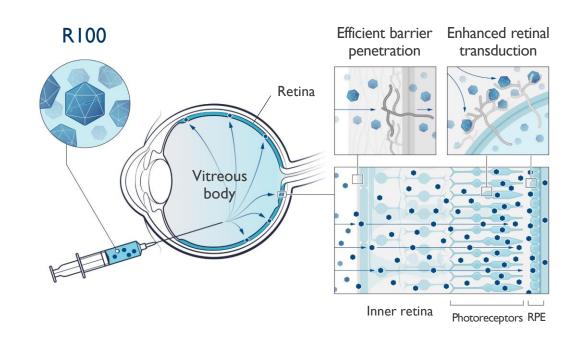
AAV-Based Gene Therapy for GA


PRESENTATION SYNOPSIS

- Addressing the challenges associated with efficient transgene delivery to the retina via intravitreal injection
- The role of the complement pathway and complement factor H (CFH) in the pathogenesis of geographic atrophy
- Therapeutic potential of short-form human CFH gene transfer via an evolved retinotropic AAV vector

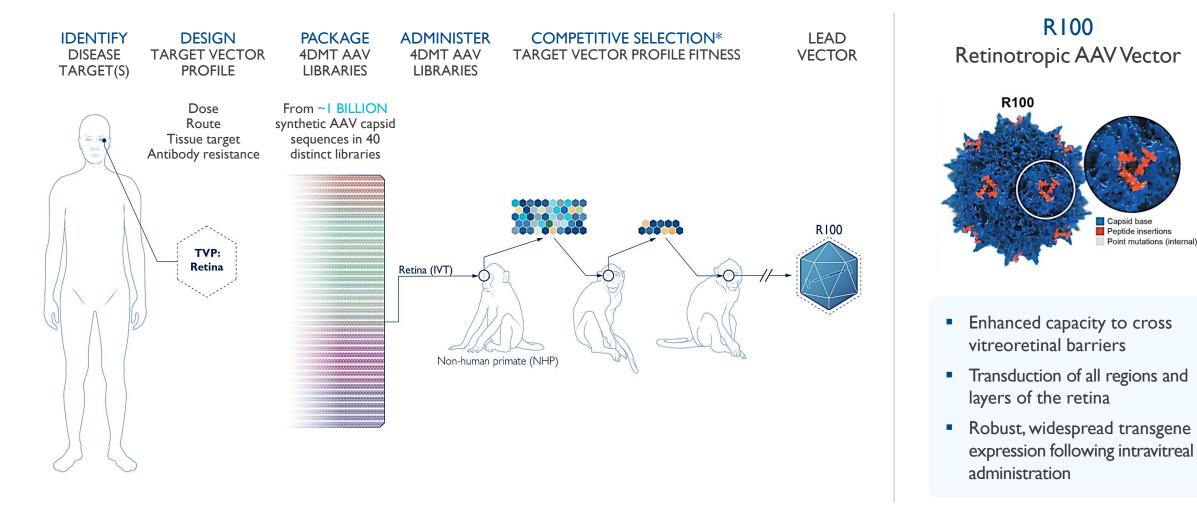
Addressing the Challenges Associated with Retinal Transgene Delivery

Therapeutic Vector Evolution

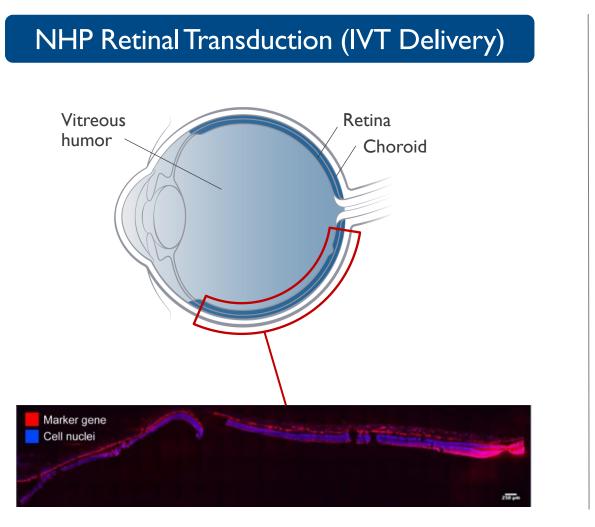

Intravitreal AAV-mediated Retinal Gene Therapy RETINAL CELL TRANSDUCTION

 Conventional wild-type AAV vectors exhibit poor retinal cell transduction

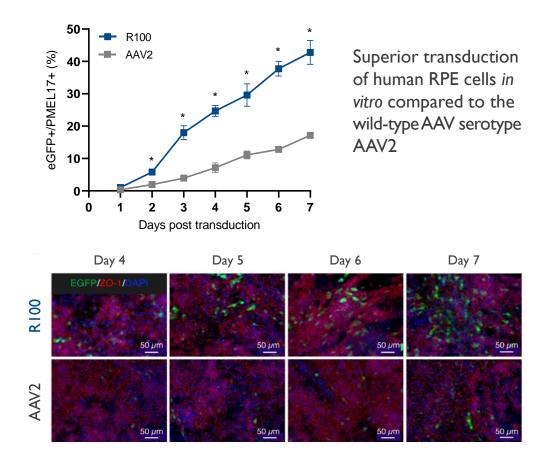
AAV, adeno-associated virus; ILM, inner limiting membrane; RPE, retinal pigment epithelium.


RI00: Retinotropic AAV Vector

 Synthetic AAV capsid variant with enhanced capacity to penetrate vitreoretinal barriers


Therapeutic Vector Evolution

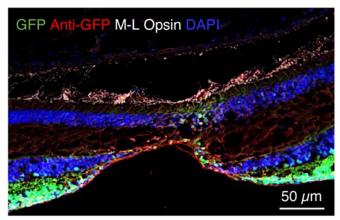
COMPETITIVE SELECTION FOR TARGET VECTOR PROFILE FITNESS



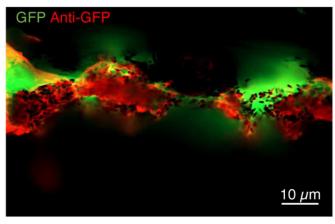
*Capsid library placed under varying selective pressures. // Actual number of selection rounds varies by target. TVP, target vector profile.

RIOO: Evolved Retinotropic Intravitreal AAV Vector

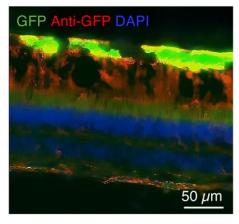
Transduction of Human RPE Cells In Vitro

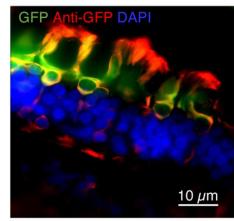


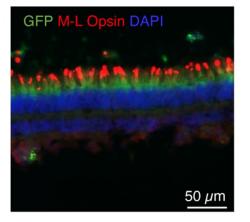
*P<0.05 (2-tailed t-test). EGFP, enhanced green fluorescent protein; IVT, intravitreal; NHP, nonhuman primate; RPE, retinal pigment epithelium.

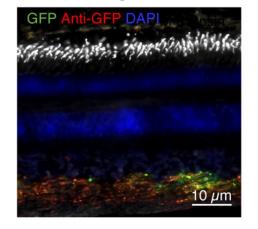

R100-mediated Transgene Expression

ROBUST PAN-RETINAL EXPRESSION FOLLOWING IVT ADMINISTRATION IN NONHUMAN PRIMATES


Central Retina

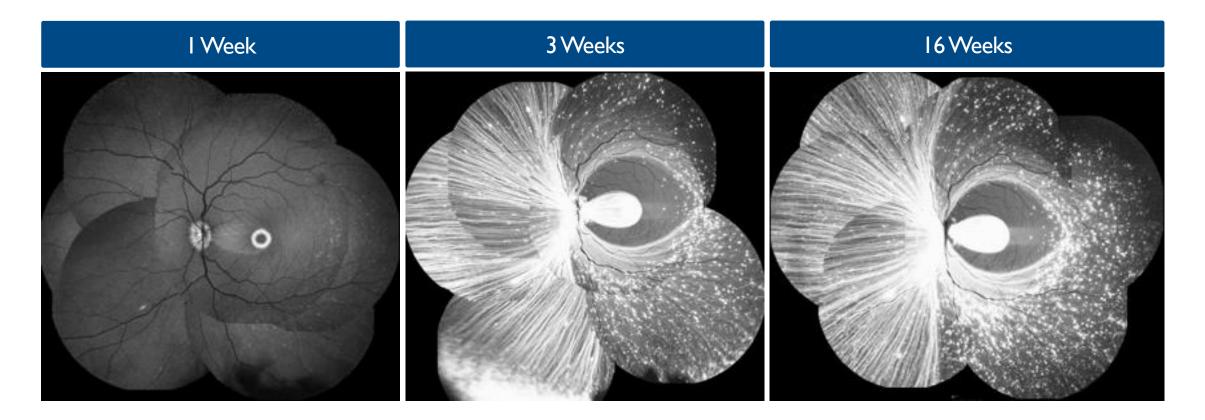

Retinal Pigment Epithelium


Peripheral PR


Photoreceptors

Peripheral PR

Retinal Ganglion Cells


NHP retina 3 weeks after IVT administration of R100.CAG-EGFP (1×10¹² vg/eye)

RI00 demonstrated robust transduction of multiple cell types and multiple cell layers in both the central and peripheral retina

GFP, green fluorescent protein; PR, photoreceptors.

R100 Intravitreal Retinotropic AAV Vector

IN-LIFE IMAGING IN NONHUMAN PRIMATES FOLLOWING IVT ADMINISTRATION OF R100.CAG-EGFP*

Durable and widespread retina transduction observed across all regions of the eye

*Ix1012 vg/eye. EGFP, enhanced green fluorescent protein; IVT, intravitreal.

R100 Biodistribution and Safety

GLP TOXICOLOGY AND BIODISTRIBUTION STUDIES—NONHUMAN PRIMATES

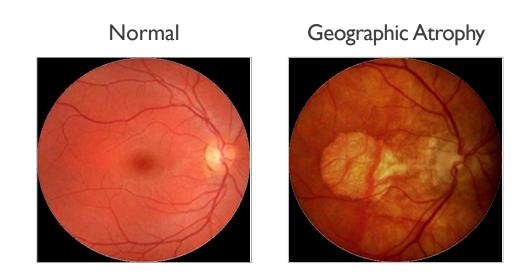
	4D	-110	4D-125	4D-150	
Species	NHP	NHP	NHP	NHP*	
Eyes dosed, N	27 (unilateral)	34 (bilateral)	30 (unilateral)	42 (bilateral)	
Route of administration	IVT	IVT	IVT	IVT	
Highest dose to date	IEI2 vg/eye	IEI2 vg/eye	IEI2 vg/eye	IEI2 vg/eye	
Clinical evaluation	No adverse findings [†]				
Clinical pathology	No adverse findings	No adverse findings	No adverse findings	No adverse findings	
Hematology	No adverse findings	No adverse findings	No adverse findings	No adverse findings	
Hematocrit	No adverse findings	No adverse findings	No adverse findings	No adverse findings	
Clinical chemistry	No adverse findings	No adverse findings	No adverse findings	No adverse findings	
Liver enzymes (ALT/AST)	No adverse findings	No adverse findings	No adverse findings	No adverse findings	
Gross pathology	No adverse findings	No adverse findings	No adverse findings	No adverse findings	
Histopathology	No adverse findings	No adverse findings	No adverse findings	No adverse findings	
Cellular immune response [‡]	Anti-capsid: negative Transgene: negative	Anti-capsid: negative Transgene: negative	Anti-capsid: negative Transgene: negative	Anti-capsid: positive Transgene: positive	

*African green monkey. [†]Transient, steroid-responsive uveitis. [‡]Enzyme-linked immunosorbant assay. IVT, intravitreal; NHP, nonhuman primate.

Vector Modularity BROAD APPLICATION ACROSS MULTIPLE RETINAL DISEASES

	Candidate	Transgene	Promotor	Target Indication	Patients Treated [*]
R100	4D-150	Aflibercept VEGF-C miRNA	Ubiquitous	Wet AMD, DME	>60
	4D-110	СНМ	Ubiquitous	Choroideremia	13
	4D-125	RPGR	Photoreceptor- specific	X-linked retinitis pigmentosa	15
	4D-175	sCFH	Ubiquitous	Geographic atrophy	NA

• Therapeutic vector profile supports modular design of retinal gene therapy candidates


*Phase 1/2 clinical trials. AMD, age-related macular degeneration; DME, diabetic macular edema; RPGR, retinitis pigmentosa GTPase regulator; sCFH, short-form complement factor H.

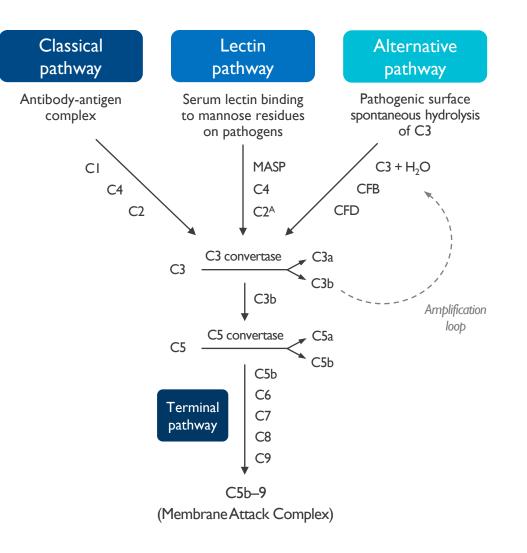
Geographic Atrophy

Therapeutic Rationale for Targeting the Complement System

Geographic Atrophy (GA) OVERVIEW

- Advanced form of age-related macular degeneration that leads to irreversible vision loss
- Affects an estimated 5 million individuals globally (1 million in the US)^{1,2}
- Characterized by atrophic lesions in the outer retina caused by degeneration of the retinal pigment epithelium (RPE), photoreceptors, and choriocapillaris³
- Clinical course: progressive loss of central vision and light sensitivity

Approximately 2/3 of patients with GA will become ineligible to drive⁴

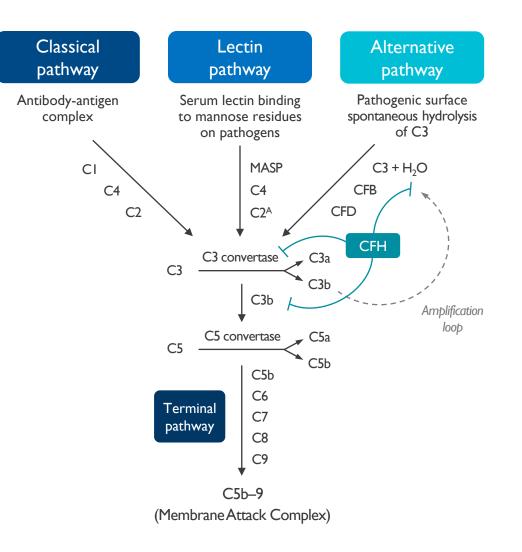

67%

Median time to vision loss below the standard for eligibility to drive: 1.6 years⁴

1. Wong et al. Lancet Glob Health 2014;2:e106–16. 2. Freidman et al. Arch Ophthalmol 2004;122:564–72. 3. Holtz et al. Ophthalmology 2014;121:1079–1091. 4. Chakravarthy et al. Ophthalmology 2018;125:842–9.

Complement Inhibition is a Validated Therapeutic Approach in GA

- Complement-mediated inflammation is recognized as a main contributor to the pathogenesis of GA
- Hyperactivation of the complement system leads to chronic inflammation and RPE damage¹
- Biochemical analysis of drusen identified the presence of multiple complement proteins²
- Clinical trials have demonstrated that complement inhibition attenuates the growth of GA lesions^{3–5}



Lachmann PJ. Adv Immunol 2009;104:115-49. 2. Anderson DH et al Prog Retin Eye Res 2010;29:95-112.
Liao D et al. Ophthalmology 2020;127:186-95. 4. Jaffe GJ, et al. Ophthalmology 2021;128:576-86.

5. Wykoff C. Presented at American Academy of Ophthalmology, November 21, 2021.

Complement Factor H (CFH)

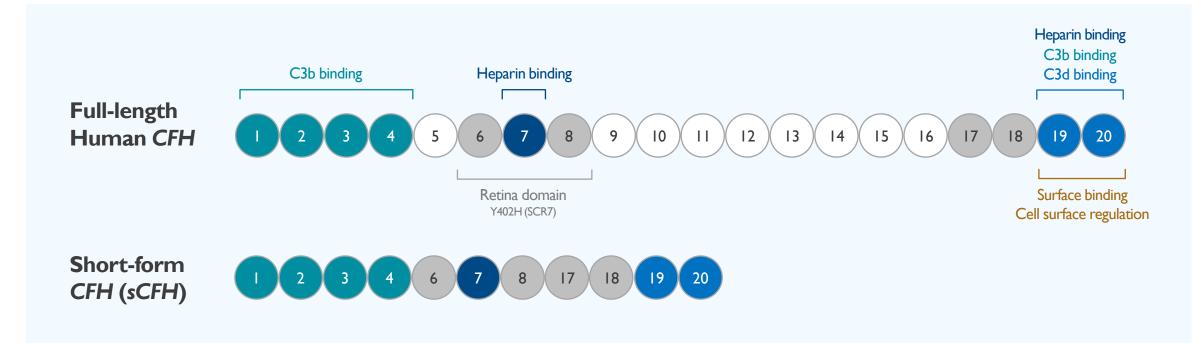
- A key regulator of the complement system
 - Inhibits assembly of C3 and C5 convertase enzymes via competition with factor B for C3b binding¹
 - Facilitates disassembly of the convertases by displacing bound factor Bb¹
 - Inactivates C3b by acting as a cofactor for complement factor I (CFI)¹
- Inactivation of alternative pathway on host cells localizes reaction to pathogens
- CFH dysfunction decreases inactivation of the complement cascade and amplifies activation of the alternative complement pathway^{2,3}

1. Perkins et al. Immunobiol 2012;217:281–297. 2. Manuelian et al. J Clin Invest 2003;111:1181-90. 3. Prosser et al. J Exp Med 2007;204:2277-83.

Rationale for CFH Gene Transfer in GA

SUPPORTED BY MULTIPLE LINES OF EVIDENCE

- Variants in the gene encoding CFH are strongly associated with the risk of GA^{1,2}
 - Most common CFH variant (Y402H) accounts for nearly 50% of the overall risk^{2,3}
 - Rare CFH variant (R1220C) is strongly associated with early onset GA⁴
- Studies in murine models support a causal role for CFH dysfunction in retinal pathology⁵
 - CFH-deficient mice exhibit increased retinal C3 deposition and decreased visual acuity²; expression of human CFH rescues the phenotype⁶
 - Transgenic mice expressing the human CFH Y402H variant develop AMD-like retinal pathology⁷
- Individuals with AMD carrying the CFH Y402H variant have elevated levels of inflammatory markers in the choroid⁸ and increased plasma levels of complement activation products⁹

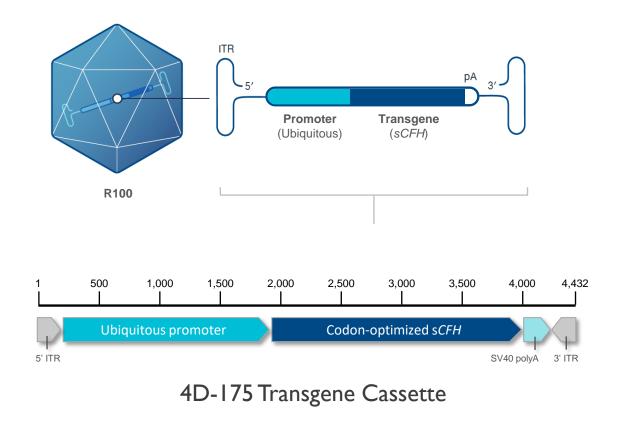

Mitchell et al. Lancet 2018:392:1147-59.
Klein et al. Science 2005;308:385-9.
Edwards et al. Science 2005;308:421-4.
Raychaudhuri et al. Nat Genet 2011;43:1232-6.
Ding et al. Adv Exp Med Bio 2014;801:213-19.
Coffey et al. Proc Natl Acad Sci USA 2007;104:16651-6.
Ding et al. Am J Pathol 2015;185:29-42.
Ufret-Vincenty et al. Invest Ophthalmol Vis Sci 2010;51:5878-87.
Smailhodzic et al. Ophthalmology 2012;119:339-46.

4D-175

Investigational Intravitreal Gene Therapy for Geographic Atrophy

4D-175 Transgene Selection SHORT-FORM COMPLEMENT FACTOR H (SCFH)

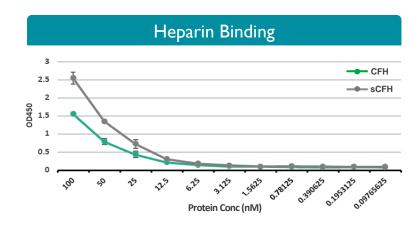
- Full-length human CFH gene and promoter exceed the payload capacity of the AAV capsid
- To reduce payload size, 4D-175 employs an engineered short-form CFH transgene

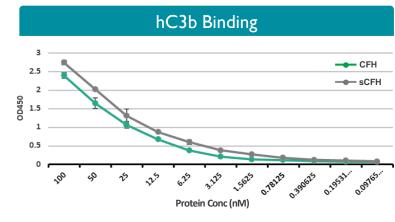


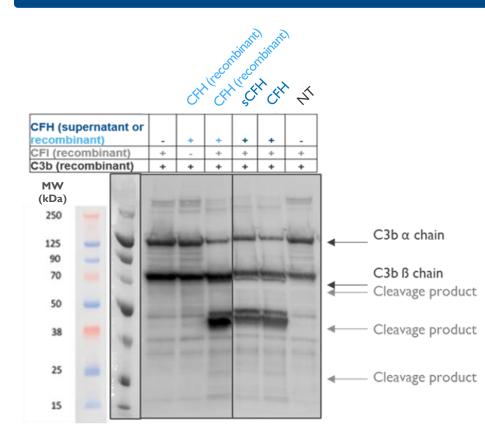
Circles represent short consensus repeats (SCRs). de Córdoba SR, de Jorge EG. Clin Exp Immunol 2008;151:1-13.

4D-175 Product Design

INTRAVITREAL GENE THERAPY FOR GEOGRAPHIC ATROPHY


- Intravitreal AAV-based gene therapy
- Clinically validated retinotropic R100 AAV capsid variant
- Codon-optimized sequence encoding a shortened form of human complement factor H (sCFH) under the control of a ubiquitous promotor
- Therapeutic objective: Restore normal complement regulation in the retina through durable expression of CFH

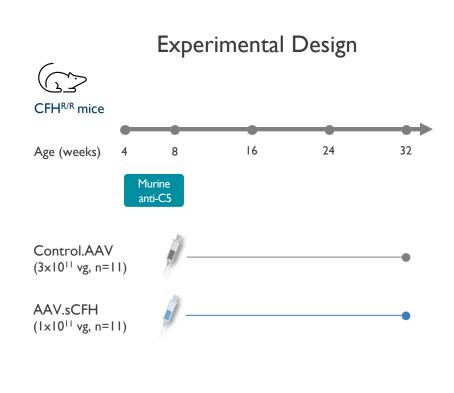


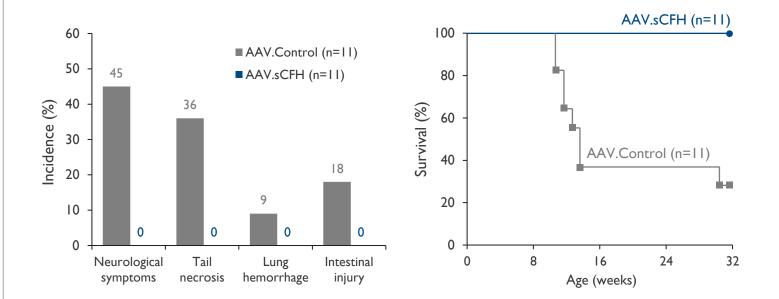

4D-175 for the Treatment of GA

CONFIRMED PHARMACOLOGICAL FUNCTION OF sCFH PROTEIN

4D-175 sCFH Binds Heparin and C3b

4D-175 sCFH Cleaves C3b Appropriately

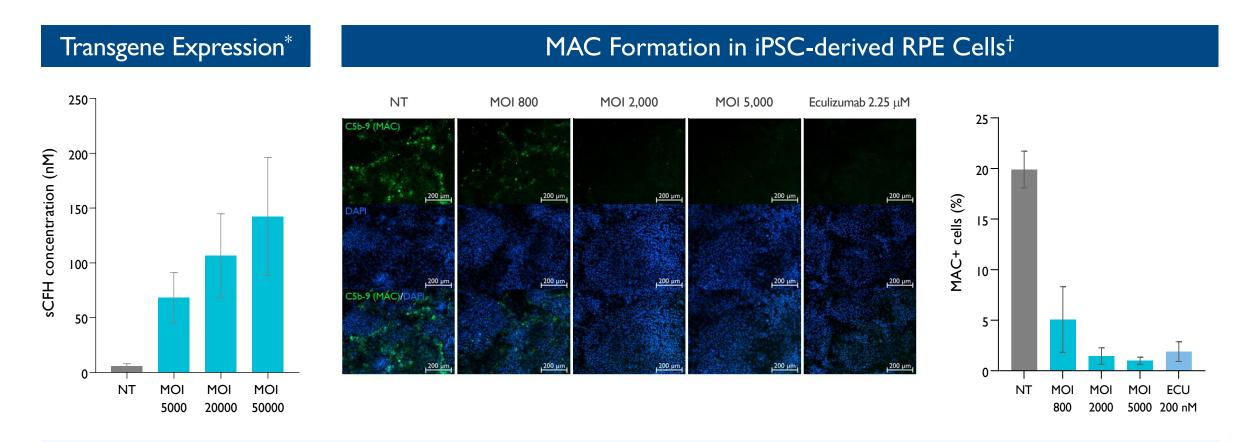

- The C3b alpha chain is degraded into iC3b in the presence of CFH + CFI
- iC3b is detected as a reduction of the alpha chain (116 kDa) and appearance of 2 iC3b breakdown bands (68 and 43 kDa)


Data on file.

4D-175 for the Treatment of GA

CONFIRMED PHARMACOLOGICAL FUNCTION OF sCFH IN VIVO

Phenotypic Correction in Mouse Model of aHUS



 sCFH prevented aHUS phenotypes and extended survival compared to controls in a mouse disease model

aHUS, atypical hemolytic uremic syndrome; sCFH, short-form complement factor H transgene.

4D-175 for the Treatment of GA

PRELIMINARY IN VITRO DATA SUPPORT TRANSGENE EXPRESSION AND ACTIVITY

Robust 4D-175 transgene expression and prevention of membrane attack complex (MAC) formation in vitro

*iPSC-derived RPE cells. iPSC, induced pluripotent stem cells; MOI, multiplicity of infection; RPE, retinal pigment epithelium. †Assessed by immunocytochemistry (left panel) and flow cytometry (right panel).

- RI00: Synthetic retinotropic AAV vector
 - Enhanced capacity to penetrate vitreoretinal barriers following IVT administration
 - Widespread transduction of retina cells allows efficient transgene delivery at low doses
 - Clinically validated: 4 clinical trials evaluating 3 separate investigational retinal gene therapies
- 4D-175: Investigational IVT gene therapy for GA
 - R100 vector carrying a codon-optimized sequence encoding sCFH
 - Robust transgene expression and complement inhibition in RPE cells in vitro
 - Confirmed pharmacological function of sCFH in *in vivo* models of complement-mediated diseases
- IND filing anticipated in IH 2024

THANKYOU

5858 Horton Street, Suite 455 Emeryville, California 94608 (510) 505-2680 | info@4DMT.com 4DMT.com